ИНДУКТИВНЫЕ ФОТОНЫ. William BARBAT.
Текста много , много воды по этому надо фильтровать:
US Patent Application №2007/0007844
Self-Sustaining Electric-Power Generator Utilizing Electrons of Low Inertial Mass to Magnify Inductive Energy
William N. BARBAT
Этот патент плотно пересекается с патентом Тесла по утилизации радиантной энергии и то о чем говорил Д.Смит.
Выжимки с патента:
ссылка на патент на буржуйском:
ссылка на русский перевод (читабельный перевод, что не может не радовать!)
В некоторых фотопроводниках и легированных полупроводниках излучается всего лишь небольшая часть всей совокупности индуктивных фотонов, при воздействии на материал и ускорении, вызывающем текучесть, электронов малой массы. Это происходит вследствие малой плотности фотопроводящих электронов малой массы в материале. В таком случае, излучение индуктивных фотонов, проходящее сквозь материал, можно эффективно захватить нормальными свободными электронами проводимости в металлической полоске, соприкасающейся с материалом, или вставленной внутрь его. Ускорение нормальных свободных электронов в металлическом проводнике создает электрическое поле, которое помогает ускорить фотоэлектроны малой массы. При такой конфигурации желательно, чтобы фотопроводящий материал полностью покрывал металлическую полоску, чтобы он находился и с внутренней и с наружной стороны, а оба конца фото- или легированного полупроводника соприкасались друг с другом.
продолжение следует...
Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.
Давно известно, что фотон делится на отрицательно заряженный ион (электрон) и положительно заряженный ион (позитрон), каждый из которых обладает одинаковым зарядом с противоположным знаком. Электроны и позитроны могут объединяться в электрически нейтральные фотоны, поэтому очевидно, что фотоны состоят из положительно и отрицательно заряженных ионов. Два иона, вращающиеся вокруг друг друга, вырабатывают фотонные волны. Единственный размер иона фотона, который может существовать как отдельная сущность, имеет либо положительный, либо отрицательный заряд, между тем как ионы могут обладать гораздо меньшим или гораздо большим зарядом и массой при объединении в фотоны, при условии, что два иона имеют равный заряд и массу. Объединенные в фотон два иона, по-видимому, притягиваются настолько сильно, что их объем становится значительно меньше по сравнению с объемом отдельных сущностей.
Когда дипольный фотон входит в оболочку электрона, его отрицательно заряженный ион стремится к центру оболочки под действием силы отталкивания Кулона, в то время как положительно заряженный ион фотона равномерно притягивается отрицательным зарядом оболочки во всех направлениях. Отрицательно заряженные ионы фотона, вероятно, объединяются в единую сущность в центре электрона, в то время как положительно заряженные ионы вращаются вокруг центральных отрицательно заряженных ионов, чтобы удержать кинетический момент фотона. Высокая окружная скорость этой вращающейся массы фотонов способствует отделению некоторых частиц от фотона и выходу их из оболочки электрона с той же скоростью, с которой они вошли в него, например, со скоростью света. Вращение положительного заряда фотона по малому радиусу Демельта вероятней всего является причиной магнитного момента, наблюдаемого в электронах с нормальной массой.
Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.
Огромное количество сверхпроводящих электронов приводится в движение под действием излучения индуктивных фотонов. И наоборот, излучение индуктивных фотонов может проходить сквозь фотопроводники с малой концентрацией свободных электронов малой массы.
Электроны, имеющие малую массу, способны к усилению индуктивной энергии, основываясь исключительно на отношении их массы к массе нормальных электронов.
Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.
Сульфид и селенид кадмия, являющиеся наиболее распространенными имеющимися в продаже фотопроводящими составами, имеют рассчитанные коэффициенты усиления, равные 37 и 59 соответственно. Длина волны максимальной чувствительности сульфида кадмия составляет 515 нанометров (находится в зеленой части видимого спектра), а длина волны максимальной чувствительности селенида кадмия – 730 нанометров (находится в ближней ИК-области спектра). При некоторых условиях сульфид и селенид кадмия можно смешать, чтобы получившаяся в результате смесь обладала средними характеристиками фотопроводимости. Можно изготавливать смеси длина волны максимальной чувствительности которых совпадала бы с длиной волны имеющихся в свободной продаже светодиодов различных размеров и с различной интенсивностью излучения.
В некоторых полупроводниках для освобождения электронов малой массы используется альфа-излучение. Второй электрон относительно малой массы был освобожден из окиси меди под действием альфа-излучения вместе с внешним электроном меди в ходе опытов Леймера (1915 г.), поскольку измеренное усиление энергии превысило усиление, рассчитанное на основании циклотронного резонанса CuO, которое наиболее вероятно относится только к массе внешнего электрона.
Чтобы повысить проводимость полупроводника для электронов малой массы без использования освещения, к нему можно добавлять примеси. Также, интегральную чувствительность к световому потоку и проводимость сульфида кадмия можно увеличить, добавив небольшое количество донорной примеси типа сульфидов, селенидов, теллуридов, арсенидов, антимонидов и пр., а также фосфидов элементов IIIa-группы: алюминия, галлия, индия и таллия
В усиливающих катушках могут использоваться и другие фотопроводящие смеси и элементы. Например, электроны проводимости кремния обладают коэффициентом усиления, равным 15x. Среди фотопроводников, обладающих очень высоким коэффициентом усиления можно назвать арсенид галлия, фосфид индия, антимонид галлия, диарсенид кадмия-олова и арсенид кадмия, расчетные коэффициенты усиления которых находятся в диапазоне от 200x до 500x, а также селенид ртути (1100x), арсенид индия (2000x), теллурид ртути (3400x), и антимонид индия (5100x).
Глубина оптической передачи в большой мере определяет оптимальную толщину фотопроводящих пленок для усиливающих катушек. Например, самая высокая оптическая передача спеченного CdS составляет 20 микрометров, но поскольку при увеличении толщины пленки средний размер зерна увеличивается (а средняя пористость уменьшается), то максимальная проводимость спеченной пленки проявляется при толщине 35 микрометров (Дж. С. Ли и др. 1987 г.).
Выбранный металл не должен вступать в химическую реакцию с фотопроводником. Например, алюминий вступает в реакцию с арсенидом галлия (GaAs) в электрической среде вследствие чего меняются свойства проводимости и GaAs, и алюминия. Во многих случаях используется золото, платина и палладий, поскольку эти материалы являются относительно инертными в химическом плане. Золото реагирует с теллуром, потому оно не подходит для использования с теллуридом ртути. Кадмирование обычного металла служит для ослабления химической активности в случае использование сульфида или селенида кадмия в качестве фотопроводника.
В качестве примера, усиливающая катушка может включать в себя сверхпроводниковый материал, в котором «условием» является температура (например, криогенная температура), при которой этот материал проявляет свои сверхпроводящие качества, характеризующиеся генерацией малоинерционных электронов. В качестве еще одного примера, усиливающая катушка может включать в себя фотопроводящий материал, в котором «условием» является ситуация, в которой фотопроводящий материал освещается фотонным излучением с определенной длиной волны, достаточной для того, чтобы фотопроводящий материал усиливающей катушки генерировал электроны проводимости, обладающие малой эффективной массой. В этом последнем примере, механизм для создания условия может включать в себя возбудитель фотопроводимости (например, один или несколько светодиодов), расположенный и сконфигурированный так, чтобы освещать фотопроводящий материал усиливающей катушки посредством фотонного излучения с определенной длиной волны. Еще одним примером может служить «условие» наличия в полупроводнике особого стимулятора, который порождает малоинерционные электроны, как носитель заряда. Еще одним примером может служить усиливающая катушка, которая содержит полупроводниковый элемент или компаунд, в состав которого входит особый элемент или компаунд, делающий его проводящим для малоинерционных электронов под действием фотонов окружающей среды, без дополнительного освещения фотонным излучением.
Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.
Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.
deltasoft пишет: Ну наконец то хоть ктото затронул данную тему. Я купил его книгу Science Myths We Tell Ourselves Но там одна вода. Вся информация в патенте. На подобном принципе делалии Хаббард и Хендершот. Они использовали радий. Я попробовал с торием на окись меди. Пока без результатно. Но торий слаборадиоактивен. Я намотал один слой обмотки трансформатора двойным проводом. Один медный провод оголен и обожжен, другой обычный в изоляции. На изолированный подавалось питание от сети. Соголенного снимал на нагрузку. Источник излучения был на расстоянии двух милиметров и вдоль витов и поперек, но пока
В патенте написано что полученные фотоэлектро5ы малой массы они же безинерционные электроны и они же сверхпроводимые эдектроны должгы быть ускорены для того чтобы из них уже получилось излучение индукционных фотонов.
В вашем опыте нет инструме5та для ускорения электронов малой массы.
С ув.
Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.
Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.
Домотал еще обмотку, чтобы следовать логике Барбата. Если оголеную обмотку просто коротить, то она садит все. Садил на нее нагрузку и на дополнительную обмотку нагрузку. Наличие альфа не дало прибавки. Пробовал америций. Но он намного слабее тория. (в наличии маленькая точка на пластинке). Пока без результатно. Частоты пробовал от промышленной до 32 кГц
Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.
Надо понять суть , еоторая кроется в теории.
Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.
Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.