Синтетическая биология. Эпигенетика

3 нед. 11 ч. назад 3 нед. 10 ч. назад от HIDE.
HIDE
Модератор
Модератор
Сообщений: 466
Больше
Автор темы
Синтетическая биология. Эпигенетика #122109
Начнём с редактирования Центральной догмы молекулярной биологии...B)

"...Синтети́ческая биоло́гия (англ. synthetic biology) — новое научное направление в биологии, занимающееся проектированием и созданием биологических систем с заданными свойствами и функциями, в том числе и тех, которые не имеют аналогов в природе[1].

Одно из принятых международным научным сообществом определений [2] синтетической биологии гласит: “проектирование и построение биологических модулей, [3] биологических систем и биологических машин или перепроектирование существующих биологических систем для полезных целей”. Функциональные аспекты данного определения берут свое начало в молекулярной биологии и биотехнологии. [4]

Синтетическая биология развивает генную инженерию, переходя от перемещения нескольких генов между организмами к созданию искусственного генома. С 2003 года количество научных публикаций по теме стремительно увеличивается. В перспективе это направление позволяет получение биотоплива из водорослей, бактериального электричества, диагностических препаратов, синтетических вакцин, бактериофагов и пробиотиков для борьбы с инфекциями, повышения продуктивности и устойчивости культивируемых растений и животных[1].

Помимо практической оценки результатов синтетической биологии существует этический вопрос о том, есть ли у человека право на реализацию искусственной эволюции (ускоренной в миллионы раз в отличие от эволюции естественной) при том, что нет достаточного уровня предвидения последствий[1]. .."
ru.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BD...BE%D0%B3%D0%B8%D1%8F

"Эпигенетика (др.-греч. ἐπι- — приставка, обозначающая пребывание на чём-либо или помещение на что-либо) — в биологии, в частности в генетике — представляет собой изучение закономерностей эпигенетического наследования — изменения экспрессии генов или фенотипа клетки, вызванных механизмами, не затрагивающими последовательности ДНК. Эпигенетические изменения сохраняются в ряде митотических делений соматических клеток, а также могут передаваться следующим поколениям. Примерами эпигенетических изменений являются метилирование ДНК и деацетилирование гистонов.

Эпигеномом называется множество молекулярных меток, регулирующих активность генов, но не изменяющих первичную структуру ДНК[1].

В рамках эпигенетики исследуются такие процессы как: парамутация, генетический букмаркинг, геномный импринтинг, инактивация X-хромосомы, эффект положения, материнские эффекты, репрограммирование, а также другие механизмы регуляции экспрессии генов. В 2011 году было показано, что метилирование мРНК также играет роль в предрасположенности к диабету, что дало начало новой отрасли — РНК-эпигенетике[2].

В эпигенетических исследованиях используется широкий спектр методов молекулярной биологии, в том числе — иммунопреципитация хроматина (различные модификации ChIP-on-chip и ChIP-Seq), гибридизация in situ, чувствительные к метилированию рестриктазы, идентификации ДНК-аденин-метилтрансферазы (DamID), бисульфитное секвенирование. Кроме того, всё большую роль играет использование методов биоинформатики (компьютерная эпигенетика).

Впервые термин «эпигенетика» употребил в 1942 году английский биолог Конрад Уоддингтон[1]. "
ru.wikipedia.org/wiki/%D0%AD%D0%BF%D0%B8...82%D0%B8%D0%BA%D0%B0

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

3 нед. 9 ч. назад 3 нед. 9 ч. назад от HIDE.
HIDE
Модератор
Модератор
Сообщений: 466
Больше
Автор темы
Синтетическая биология. Эпигенетика #122119
"Центральная догма молекулярной биологии — обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку, но не в обратном направлении. Правило было сформулировано Френсисом Криком в 1958 году[1] и приведено в соответствие с накопившимися к тому времени данными в 1970 году[2]. Переход генетической информации последовательно от ДНК к РНК и затем от РНК к белку является универсальным для всех без исключения клеточных организмов, лежит в основе биосинтеза макромолекул. Репликации генома соответствует информационный переход ДНК → ДНК. В природе встречаются также переходы РНК → РНК и РНК → ДНК (например у некоторых вирусов), а также изменение конформации белков, передаваемое от молекулы к молекуле"
ru.wikipedia.org/wiki/%D0%A6%D0%B5%D0%BD...BE%D0%B3%D0%B8%D0%B8

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

2 нед. 6 дн. назад 2 нед. 6 дн. назад от HIDE.
HIDE
Модератор
Модератор
Сообщений: 466
Больше
Автор темы
Синтетическая биология. Эпигенетика #122146
Генети́ческий код (англ. Genetic code) — совокупность правил, согласно которым в живых клетках последовательность нуклеотидов (ген и мРНК) переводится в последовательность аминокислот (белок). Собственно перевод (трансляцию) осуществляет рибосома, которая соединяет аминокислоты в цепочку согласно инструкции, записанной в кодонах мРНК. Соответствующие аминокислоты доставляются в рибосому молекулами тРНК. Генетический код всех живых организмов Земли един (имеются лишь незначительные вариации), что свидетельствует о наличии общего предка.

Правила генетического кода определяют, какой аминокислоте соответствует триплет (три подряд идущих нуклеотида) в мРНК. За редкими исключениями[1], каждому кодону соответствует только одна аминокислота. Конкретная аминокислота может кодироваться более чем одним кодоном, есть также кодоны, означающие начало и конец белка. Вариант генетического кода, который используется подавляющим большинством живых организмов, называют стандартным, или каноническим, генетическим кодом. Однако известно несколько десятков исключений из стандартного генетического кода, например, при трансляции в митохондриях используются несколько изменённые правила генетического кода.

Простейшим представлением генетического кода может служить таблица из 64 ячеек, в которой каждая ячейка соответствует одному из 64 возможных кодонов[2].
Вырожденность
Способность разных кодонов кодировать одну аминокислоту называется вырожденностью кода. Впервые генетический код назвали вырожденным[en] Ниренберг и Бернфилд. Однако, несмотря на вырожденность, в генетическом коде полностью отсутствует двусмысленность. Например, кодоны GAA и GAG оба кодируют глутамат, но ни один из них не кодирует одновременно ещё какую-то аминокислоту. Кодоны, соответствующие одной аминокислоте, могут различаться по любым позициям, однако чаще всего две первые позиции у таких кодонов совпадают, а различается только последняя. Благодаря этому мутация, затронувшая третью позицию кодона, скорее всего, не скажется на белковом продукте[44].

Эта особенность может быть объяснена гипотезой неоднозначной пары оснований, предложенной Франсисом Криком. Согласно этой гипотезе, третий нуклеотид в кодоне ДНК может быть не полностью комплементарен антикодону тРНК для компенсации несоответствия числа типов тРНК числу кодонов
ru.wikipedia.org/wiki/%D0%93%D0%B5%D0%BD...9_%D0%BA%D0%BE%D0%B4

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.